

Description

Seeding is used to control runoff and erosion on disturbed areas by establishing perennial vegetative cover from seed. It reduces erosion and sediment loss and provides permanent stabilization. This practice is economical, adaptable to different site conditions, and allows selection of a variety of plant materials.

Selection Criteria Seeding is well-suited in areas where permanent, long-lived vegetative cover is the most practical or most effective method of stabilizing the soil. Use seeding on roughly graded areas that will not be re-graded for at least a year. Vegetation controls erosion by protecting bare soil will stabilizing surfaces from displacement by raindrop impacts and by reducing the velocity and quantity of overland flow. Lower initial costs and labor needs are the advantages of seeding over other means of establishing vegetation.

Design Consideration Seed or plant permanent vegetation in areas 1 to 4 months after the final grade is achieved unless temporary stabilization measures are in place. Maximize successful plant establishment with planning; considering soil characteristics; selecting plant materials that are suitable for the site; preparing, liming, and fertilizing the seedbed adequately; planting timely; and maintaining regularly. Major factors that dictate the suitability of plants for a site include climate, soils, and topography. Prepare and amend the soil on a disturbed site to provide sufficient nutrients for seed germination and seedling growth. Loosen the soil surface enough for water infiltration and root penetration. If soils are too acidic, increase the pH to between 6.0 and 6.5 with liming or choose plants that are appropriate for the soil characteristics at your site. Protect seeds with mulch to retain moisture, regulate soil temperatures, and prevent erosion during seedling establishment.

Limitations

The effectiveness of seeding can be limited by high erosion during establishment, the need to reseed areas that fail to establish, limited seeding times, or unstable soil temperature and soil moisture content during germination and early growth. Seeding does not immediately stabilize soils; therefore, use temporary erosion and sediment control measures to prevent pollutants from disturbed areas from being transported off the site.

Maintenance

Maintenance for seeded areas will vary depending on the level of use expected. Use long-lived grass perennials that form a tight sod and are fine-leaved for areas that receive extensive use, such as homes, industrial parks, schools, churches, and recreational areas. Whenever possible, choose native species that are adapted to local weather and soil conditions to reduce water and fertilizer inputs and lower maintenance overall. In arid areas, consider seeding with non-grass species that are adapted to drought conditions, called xeriscaping, to reduce the need for watering.

Low-maintenance areas are mowed infrequently or not at all and do not receive lime or fertilizer regularly. Plants must be able to persist with minimal maintenance over long periods of time. Use grass and legume mixtures for these sites because legumes fix nitrogen from the atmosphere. Sites suitable for low-maintenance vegetation include steep slopes, stream or channel banks, some commercial properties, and "utility" turf areas such as road banks.

Grasses should emerge within 4-28 days and legumes 5-28 days after seeding, with legumes following grasses. A successful stand has the following characteristics:

- Vigorous dark green or bluish green (not yellow) seedlings
- Uniform density, with nurse plants, legumes, and grasses well intermixed
- Green leaves that remain green throughout the summer at least at the plant bases

Inspect seeded areas for failure and, if needed, reseed and repair them as soon as possible. If a stand has inadequate cover, reevaluate the choice of plant materials and quantities of lime and fertilizer. Depending on the condition of the stand, repair by overseeding or reseeding after complete seedbed preparation. If timing is bad, overseed with rye grain or German millet to thicken the stand until a suitable time for seeding perennials. Consider seeding temporary, annual species if the season is not appropriate for permanent seeding. If vegetation fails to grow, test the soil to determine if low pH or nutrient imbalances are responsible.

On a typical disturbed site, full plant establishment usually requires refertilization in the second growing season. Use soil tests to determine if more fertilizer needs to be added. Do not fertilize cool season grasses in late May through July. Grass that looks yellow might be nitrogen deficient. Do not use nitrogen fertilizer if the stand contains more than 20 percent legumes.

Effectiveness

Perennial vegetative cover from seeding has been shown to remove between 50 and 100 percent of total suspended solids from stormwater runoff, with an average removal of 90 percent (USEPA, 1993).

Reference

FHWA (Federal Highway Administration). 1995. Best Management Practices for Erosion and Sediment Control. FHWA-SLP-94-005. Federal Highway Administration, Sterling, VA.

Smolen, M.D., D.W. Miller, L.C. Wyall, J. Lichthardt, and A.L. Lanier. 1988. *Erosion and Sediment Control Planning and Design Manual*. North Carolina Sedimentation Control Commission; North Carolina Department of Environment, Health, and Natural Resources; and Division of Land Resources, Land Quality Section, Raleigh, NC.

Terra Firma Industries. 2000. Hydroseeding.

USEPA (U.S. Environmental Protection Agency). 1992. Stormwater Management for Industrial Activities: Developing Pollution Prevention Plans and Best Management Practices. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

USEPA (U.S. Environmental Protection Agency). 1993. Guidance Specifying Management Measures for Sources of Nonpoint Pollution in Coastal Waters. EPA 840-B-92-002. U.S. Environmental Protection Agency, Office of Water, Washington, DC.